
IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

Utilizing Machine Learning, Perspective Correction,
and String Matching for Detecting QRIS

Counterfeits
Maulvi Ziadinda Maulana – 135221221

Department of Informatics Engineering
School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia
113522122@std.stei.itb.ac.id

Abstract— The rapid adoption of Quick Response Code
Indonesian Standard (QRIS) for electronic transactions in
Indonesia has been accompanied by a rise in fraudulent activities
involving counterfeit QRIS codes. This paper presents an
approach to detecting counterfeit QRIS codes through the
integration of machine learning, perspective correction, and
string-matching algorithms. The proposed method begins with
edge detection to isolate and normalize the QRIS image to ensure
the image is accurate. Machine learning techniques are then use
for text extraction. The authenticity of the QRIS is verified using
a string-matching algorithm to compare the extracted data against
the expected values. Testing showed that the method effectively
corrected the perspective of QRIS images captured at various
angles and accurately distinguished between genuine and
counterfeit QRIS codes, though the execution time was relatively
slow. Further optimization is needed to improve the efficiency of
the perspective correction, text extraction, and QR decoding
processes.

Keywords— QRIS; Machine Learnin; Perspective Correction;
String Matching.

I. INTRODUCTION
In recent years, the use of Quick Response Code Indonesian

Standard (QRIS) has gained significant traction in Indonesia,
offering a very convenient and efficient method for electronic
transactions. However, the rise in QRIS usage has also led to an
increase in fraudulent activities, where counterfeit QRIS codes
are used to deceive users and misappropriate funds. This paper
aims to address this pressing issue by exploring an approach to
detect counterfeit QRIS codes through the integration of
machine learning, perspective correction, and string-matching
algorithms.

The motivation behind this research arises from several
reported cases of QRIS counterfeiting in Indonesia, which pose
a significant threat to both consumers and businesses. For
instance, incidents of QRIS fraud have been reported where fake
QR codes were used to divert payments intended for legitimate
merchants to fraudulent accounts. Additionally, the increasing
prevalence of such cases has prompted concerns about the
security of QRIS transactions, highlighting the urgent need for a

reliable detection mechanism to safeguard against fraudulent
activities.

This paper detection process begins with perspective
correction to isolate and normalize the QRIS image, ensuring
that only the relevant QR code is processed, devoid of any
irrelevant background. This step is crucial for enhancing the
accuracy of following analyses. Following normalization,
machine learning techniques are used to extract text from the
QRIS, specifically targeting the retrieval of the name and ID
associated with the QR code.

To verify the authenticity of the QRIS, this paper utilizes a
string-matching algorithm to compare the reconstructed string
against the expected name and ID from the QR code. If a match
is found, the QRIS is considered authentic; otherwise, it is
classified as counterfeit. This multi-step approach leverages the
strengths of various computational techniques to provide a
comprehensive solution for detecting counterfeit QRIS codes.

II. FUNDAMENTAL THEORY
By combining machine learning, perspective correction, and

string matching, this paper aims to contribute a method for
enhancing the security and reliability of QRIS transactions in
Indonesia, ultimately protecting users from the disadvantageous
effects of QRIS counterfeiting.

A. Machine Learning and Text Detection
Machine Learning is a subset of artificial intelligence that

involves the development of algorithms and statistical models
enabling computers to perform specific tasks without explicit
instructions. Instead, the systems learn from data and improve
their performance over time.[1]

Machine learning's ability to learn from data and improve
over time has made it a powerful tool in the field of computer
vision, particularly in tasks such as text detection. By training
machine learning models on large datasets of images with
labeled text regions, these models can learn to identify and
localize text within images or video frames. The detected text
regions can then be processed further by text recognition

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

systems, creating a solution for automated text extraction from
images.

Text detection itself is a process in computer vision that
involves identifying and localizing text within images or video
frames. This task is crucial for various applications such as
document analysis, automatic number plate recognition, and
assisting visually impaired individuals. Text detection
algorithms scan through images to detect regions that likely
contain text, which can then be extracted and processed further
by text recognition systems (often referred to as Optical
Character Recognition, or OCR).[2]

In this study, this paper will utilize PyTesseract for text
detection. PyTesseract is an Optical Character Recognition
(OCR) tool for Python that recognizes and reads the text
embedded in images. It is a wrapper for Google's Tesseract-OCR
Engine. By using PyTesseract, it can accelerate the research
process as it eliminates the need to develop a new model from
scratch. This tool has been widely used and validated in the field,
providing reliable and efficient text detection for a variety of
applications. Its use in this context allows to focus on the
application and evaluation of our approach, rather than the time-
consuming task of model development.

The text detection process in this study will specifically
target the Quick Response Code Indonesian Standard (QRIS)
images. The text elements of interest within these images are the
'name' and 'id'. These pieces of information are important as they
are unique identifiers that can be used to verify the authenticity
of the QRIS.

B. Perspective Correction
Perspective correction is necessary for ensuring QRIS

images are properly aligned and easy to read. The process begins
with preprocessing the QRIS image by resizing it, converting it
to grayscale, and applying transformations such as dilation,
erosion, and Gaussian blur to enhance the edges. Grayscale
conversion simplifies processing by removing color
information, while dilation and erosion emphasize boundaries
and remove noise. Gaussian blur reduces noise and detail,
improving edge detection accuracy.

Figure 1. Canny Edge Detection Illustration (Source:

towardsdatascience.com)

Edge detection is performed using the Canny edge detection
algorithm, which identifies areas with rapid intensity changes.

This algorithm uses two thresholds to detect strong and weak
edges, ensuring that weak edges connected to strong edges are
also considered. Then, the Hough Line Transformation is going
to be used to detect straight lines in the edge-detected image by
transforming points in the image space to the parameter space
and identifying lines where many points converge.

Figure 2. Line Detection Illustration (Source: towardsdatascience.com)

Detected lines often include duplicates and irrelevant lines,
so it needs to be filtered to retain only the most relevant ones and
calculates their intersections. Line filtering removes duplicates
based on predefined thresholds, and intersection points are
calculated for lines forming angles within a specified range,
indicating potential corners of the QRIS image. From these
intersection points, the best quadrilateral, which forms the QRIS
code boundary, is selected based on the maximum area of the
convex hull.

This process, the perspective correction, is going to be
performed using the OpenCV library in Python, transforms the
selected quadrilateral into a flat, rectangular image. Using the
four corner points, a transformation matrix is computed to map
the quadrilateral to a rectangle. This matrix is then applied to
obtain the corrected image, ensuring a top-down, flat view of the
QRIS code. OpenCV is chosen for this task because it contains
all the necessary functions and algorithms for image processing,
including edge detection, line detection, and perspective
transformation, making it a efficient tool for such operations.

C. QR Code Decoding
This study utilizes ZBar, a versatile open-source library

designed for reading barcodes from various sources including
video streams, image files, and raw intensity sensors. ZBar's
proficiency in decoding QR codes is largely attributed to its
implementation of the Reed-Solomon error correction
algorithm, which significantly enhances the quality of the
decoding process. Reed-Solomon is a powerful error-correcting
code capable of detecting and correcting multiple symbol errors.
In the context of QR codes, this ensures that even if parts of the
QR code are damaged or obscured, the embedded information
can still be accurately decoded. This error correction capability
is critical for maintaining the integrity of the data extracted from
QRIS codes, as it ensures the reliability of the decoded
information even under suboptimal conditions.

Moreover, the ZBar library employs a unique approach akin
to traditional "wand" and "laser" scanners used for linear (1D)
bar codes. These traditional scanners decode bar codes by
passing a light sensor over the light and dark areas of a symbol,
interpreting the reflected light to decode the data. Similarly,
ZBar performs linear scan passes over an image, treating each

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

pixel as a sample from a single light sensor. This method allows
the data to be scanned, decoded, and assembled on the fly,
bypassing the need for complex image processing techniques
that require significant CPU and memory resources. By adopting
this approach, ZBar simplifies the decoding process and reduces
sensitivity to various filter parameter configurations, which can
often be difficult for end-users to understand and set up
correctly.

Furthermore, ZBar abstracts this linear scanning approach
into a layered streaming mode, allowing for efficient real-time
processing of barcode data. This approach not only enhances the
decoding speed but also maintains high accuracy, making it
particularly effective for applications where rapid and reliable
barcode reading is needed. The combination of Reed-Solomon
error correction and ZBar's linear scanning method ensures that
QR codes, including QRIS codes, are decoded accurately and
efficiently, providing a great solution for detecting counterfeit
QRIS codes. By using ZBar's efficient decoding capabilities and
the robust error correction provided by Reed-Solomon, this
system can reliably extract and verify the embedded information
in QRIS codes.

D. String Matching Algorithm
The fundamental theory behind string matching algorithms

revolves around efficiently finding a pattern within a larger text.
The two primary approaches discussed are the Knuth-Morris-
Pratt (KMP) algorithm and the Boyer-Moore Algorithm.

1. Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (KMP) algorithm is another highly
efficient string matching algorithm. It avoids redundant
comparisons by preprocessing the pattern to determine the
longest prefix which is also a suffix (LPS array). This
preprocessing allows the algorithm to skip sections of the text
that have already been matched.

The algorithm preprocesses the pattern to create the LPS
array, which stores the length of the longest prefix that is also a
suffix for each sub-pattern of the pattern. This step ensures that
the algorithm does not re-examine characters that have already
been matched.

Figure 3. LPS in KMP Algorithm (Source: medium.com)

After doing the preprocessing, the algorithm then switch to
matching phase. During the matching phase, the algorithm
compares characters of the pattern with characters of the text. If
a mismatch occurs, it uses the LPS array to shift the pattern
efficiently without re-examining previously matched characters.

 The KMP algorithm is particularly effective for patterns with
repetitive sub-patterns and performs well even with small

alphabets. Its time complexity is O(m + n), where m is the length
of the pattern and n is the length of the text, making it faster than
brute force methods .

2. Boyer-Moore Algorithm

 The Boyer-Moore string matching algorithm is known for its
efficiency and is widely used in various applications. This
algorithm utilizes two primary techniques: the looking-glass
heuristic and the character-jump heuristic. These heuristics
allow the algorithm to skip sections of the text, thereby reducing
the number of comparisons and enhancing its performance.

 When a mismatch occurs, the algorithm uses a precomputed
table to determine how far the pattern can be shifted. This table,
called the last occurrence function, maps each character in the
pattern to its last occurrence in the pattern. If the mismatched
character in the text does not exist in the pattern, the pattern is
shifted completely past the mismatched character.

Figure 4. Example of Last Occurrence Table (Source:

www.semanticscholar.org)

 The Boyer-Moore algorithm’s efficiency comes from its
ability to skip large sections of the text, especially when dealing
with large alphabets. However, it performs poorly with small
alphabets and in the worst-case scenario, where the pattern and
text are composed of repetitive characters.

3. Algorithm Choice for QRIS Counterfeit Detection

 For detecting QRIS counterfeits, where the QR codes
contain a significant amount of data, the Boyer-Moore algorithm
is better. QR codes encode large strings of characters, and the
Boyer-Moore algorithm’s ability to skip large sections of the text
using the last occurrence array makes it well-suited for this task.
Given the need for efficient and reliable detection, the Boyer-
Moore algorithm’s heuristics ensure that even large QR codes
can be processed quickly and accurately by minimizing
unnecessary comparisons and having more efficient pattern
shifts.

III. METHODOLOGY
Based on the explanations in the fundamental theory, the

research process will be divided into several parts. The first part
involves perspective correction of the image to ensure that the
QR code is properly aligned and isolated from its background.
The second part focuses on text extraction from both the image
and the QR code by using the machine learning text detection.
Finally, the third part is the text matching stage, where the
extracted text from the image is compared with the text from the
QR code to verify authenticity and detect any potential
counterfeit QRIS codes.

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

A. Perspecive Correction

 (a) (b)

Figure 5. (a) Test Image for Perspective Correction and (b) Image after some
filtering (Source: Author’s Documentation)

The first step of this process is converting the image to

grayscale and applying dilation, blurring, and erosion. These are
important preprocessing steps for edge detection and line
detection. Converting to grayscale simplifies the image by
reducing the color channels to one, making it easier to process
and analyze. Dilation is applied to enhance and connect edges,
making noticeable features more visible. Blurring, that is done
using a Gaussian blur, helps reduce noise and detail. Erosion
then refines the edges by removing small, irrelevant details and
noise, improving the accuracy of following edge detection steps.
These preprocessing steps collectively prepare the image,
enhancing the important features while minimizing noise, to
facilitate more accurate detection of lines and intersections in the
following processing stages.

 (a) (b)

Figure 6. (a) Result of Canny Edge Detection and (b) The Result of Hough
Line Transformation (Source: Author’s Documentation)

The next step is performing edge detection using the Canny

Edge Detection Algorithm and then applying the Hough
Transform to detect line. The Canny algorithm detects edges by
identifying areas of rapid intensity change, creating a binary
image where edges are highlighted. This edge map is then
processed using the Hough Transform, which detects straight

lines by transforming edge points into a parameter space (rho
and theta) and identifying lines that accumulate sufficient sizes.
These detected lines represent the structural boundaries of the
document or object in the image. The next step is to identify the
intersection points of these lines and correct the perspective of
the image based on these points.

 (a) (b)

Figure 7. (a) Intersection Points of the lines and (b) The Best 4 Point that
created the biggest quadrilateral (Source: Author’s Documentation)

The next step if finding the intersection points of the detected

lines and identifying the four best points that form the largest
quadrilateral. After detecting lines using the Hough Transform,
the next step is to calculate the intersection points of these lines.
These points represent where two different lines intersect, likely
indicating the corners of the document or object of interest. From
all the intersection points found, an algorithm then searches for
the four points that form the largest quadrilateral. This is done
by examining combinations of intersection points and
calculating the area of the quadrilateral they form. The four
points that form the largest area are most likely the corners of
the document or object, which are then used for perspective
correction to make the image appear straight and properly
aligned.

Figure 8. Result Image after Perspective Correction

Finally, after identifying the four best points that form the
largest quadrilateral, the perspective correction is applied. Using
these points, a perspective transformation is performed to map

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

the identified quadrilateral to a rectangular shape, effectively
"straightening" the QRIS image. This corrected image appears
as if it was taken from a direct overhead view, making it properly
aligned and easier to read or analyze further. The result of this
perspective correction process is a clear, properly oriented image
that accurately represents the QRIS in its corrected form.

B. Image and QR Code Text Extraction
The process involves two main tasks: QR code detection and

decoding and text extraction from the image. This process
utilizes several libraries. OpenCV (cv2) is used for most image
processing tasks, including loading images, converting them to
grayscale, applying Gaussian blur to reduce noise, and using
Otsu's thresholding to create a binary image that highlights
significant contrast areas. OpenCV also detects and filters
contours based on their area, aspect ratio, and shape to identify
and extract the QR code region for decoding.

For QR code decoding, the pyzbar library is used. This
library is specifically designed to decode barcodes and QR codes
from images, providing the functionality to read and interpret the
encoded data within the QR code.

For text extraction, the Pillow (PIL) library and pytesseract
are used. Pillow is a powerful imaging library that allows to open
and manipulating image files. Tesseract OCR, accessed through
the pytesseract wrapper, processes the image to detect and
extract textual content, converting it into a readable string
format. Pytesseract is a machine learning-based OCR tool,
having a trained models to recognize and decode text from
images accurately. This combination of libraries enables
complete image processing, QR code decoding, and text
extraction capabilities within the code.

Below is the result of the text extraction from the image in
figure 8 using these libraries:
QR Code Standar

Ein [=)/Pembayaran Nasional N

BAZNAS INDONESIA

NMID : ID2020034177440

Dicetak Oleh: Sh

Versi Cetak : 1.0-2020.04,23

Given that the extracted text may contain some unnecessary
information, a filtering process is required to remove the
unwanted text, leaving only the name and ID from the given
QRIS. Below is the final result of the text extraction.
BAZNAS INDONESIA

ID2020034177440

Below is the result of the QR decoding:
00020101021126590016ID.CO.SHOPEE.WWW01189360091800
0016725302061672530303UBE51440014ID.CO.QRIS.
WWW0215ID20200341774400303UBE5204839853033605802ID
5916BAZNAS Indonesia6013JAKARTA
TIMUR61051315062070703A0163041C0Cbbb

C. String Matching Phase
Once the name and ID from the QRIS have been obtained,

a string-matching process will be done using these as patterns,
with the text being the decoded result from the QR. If both the
name and ID are found within the text, it can be concluded that
the QRIS is authentic. However, if either or both are not found
in the QRIS, it can be concluded that the QRIS is fake.

According to fundamental theory, the Boyer-Moore
algorithm will be used for this task. The algorithm will be
executed twice: once to search for the name and once to search
for the ID.

D. Program Testing
The testing process will be conducted in two parts. The first

part will be carried out on the perspective correction program.
The second part will involve testing the string-matching process
to determine the authenticity of QRIS.

1. Perspective Correction Testing

To test the perspective correction, images will be captured
at various angles. The following illustration shows the angles at
which the images will be taken. The angle value q will change
from 0, 30, and 60 degrees. At 0 degrees, the image is captured
directly from the front, resulting in a straight and flat view of
the QRIS code. At 30 degrees, the image is taken with a slight
tilt, which may introduce some perspective distortion but
remains relatively clear for recognition. At 60 degrees, the
image is captured with a greater tilt, introducing more
significant perspective distortion and making it harder to
recognize directly without perspective correction. These angle
variations are crucial for testing the ability of the perspective
correction algorithm to handle different levels of distortion that
might occur under various image capture conditions.

Figure 9. Test Image for Perspective Correction

And below is the result test for each angle.

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

 (a) (b)

Figure 10. (a) Image with 0 degree tilt and (b) The corrected image result
(Source: Author’s Documentation)

(a) (b)

Figure 11. (a) Image with 30 degree tilt and (b) The corrected image result
(Source: Author’s Documentation)

(a) (b)

Figure 12. (a) Image with 30 degree tilt and (b) The corrected image result
(Source: Author’s Documentation)

2. String Matching testing

(a) (b)

Figure 13. (a) Genuine QRIS Image and (b) Counterfeit QRIS Image (Source:

Author’s Documentation)

For testing purposes, two QRIS codes will be used: one
genuine (QRIS (a)) and one fake (QRIS (b)). The testing will
be conducted for each type, where the program will be used to
verify the authenticity of the QRIS. Each type of QRIS will be
captured in images three times with different angles (θ) of 0, 30,
and 60 degrees, like the previous tests. The results of the text
extraction and the time used will be displayed in the following
table.

Table 1. QRIS Authenticity Test Results

 Type

	 q

Real Fake

Result Time
Used

Result Time
Used

0° Real 4,60 s Fake 3,96 s
30° Real 6,00 s Fake 4,81 s
60° Real 5,72 s Fake 4,77 s

IV. RESULT & ANALYSIS
The testing process was divided into two parts: perspective

correction testing and string-matching testing. In the
perspective correction testing phase, images of QRIS codes
were captured at various angles (0°, 30°, and 60°) to evaluate
the accuracy of the perspective correction algorithm. The
results showed that at 0° and 30°, the perspective correction was
great, with the QRIS images being accurately corrected and
fully captured. However, at a 60° angle, while the algorithm
managed to include the entire QRIS image, some background
elements were also included, indicating a decrease in accuracy.

In the string-matching testing phase, the process was tested
to verify the authenticity of the QRIS codes using one genuine
QRIS (a) and one fake QRIS (b). Images were captured at
angles of 0°, 30°, and 60°, and the results of text extraction and
QR decoding were analyzed. The program successfully
distinguished between genuine and fake QRIS codes in all test
cases. The performance of text extraction and QR decoding was
consistent and accurately identified the authenticity of the QRIS

IF2211 Algorithm Strategy Paper, Semester II of 2023/2024

codes. However, the execution time was relatively slow, with
most tests taking over 4 seconds, suggesting possible
inefficiencies in the process. This indicates that despite using
the Boyer-Moore string matching algorithm, which is known
for its efficiency, the time-consuming steps might be in
perspective correction, text extraction, or QR decoding.

V. CONCLUSION
In conclusion, the testing demonstrated that the perspective

correction and text extraction processes are effective in
handling QRIS images captured at various angles. Although the
perspective correction at a 60° angle showed reduced accuracy
by including some background elements, it did not affect the
subsequent processes, and the QRIS codes were correctly
identified. The string-matching tests confirmed the program's
ability to differentiate between genuine and fake QRIS codes.
However, the overall performance could be improved as the
execution time for these processes was notably slow. Further
research is needed to pinpoint whether the time-consuming
steps are in perspective correction, text extraction, or QR
decoding, and to optimize these processes accordingly.

GITHUB REPOSITORY
https://github.com/maulvi-zm/DetectQRCounterfeits

VIDEO LINK AT YOUTUBE
https://youtu.be/kgaGwsbFUjo

ACKNOWLEDGMENT
Praise and gratitude are only to Allah Swt., for it is through His
blessings and abundant grace that the author has been able to
complete this paper successfully. Special thanks are also

extended to Ir. Rila Mandala, M.Eng., Ph.D., and Mr.
Monterico Adrian, S.T., M.T., as the lecturer for the IF2211
Algorithm Strategy course, Class K-03, for the knowledge
imparted to the author, enabling the successful completion of
this paper. Additionally, heartfelt thanks are conveyed to the
parents for their constant support and motivation provided to
the author.

REFERENCES
[1] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
[2] Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A. (2016).

Reading Text in the Wild with Convolutional Neural Networks.
International Journal of Computer Vision, 116(1), 1-20.

[3] Calvin, F., Olajuwon, J. K., & Kusuma, G. P. (2022). QR Code Detection
a`nd Rectification Using Pyzbar and Perspective Transformation. Journal
of Theoretical and Applied Information Technology, 100(21), 6408-6414.

[4] Munir, Rinaldi. (2021). Pencocokan String. Institut Teknologi Bandung.
Retrieved from https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/
2020-2021/Pencocokan-string-2021.pdf. Accessed on 10 June 2024,
20.51, GMT+7.

STATEMENT
I hereby declare that this paper I have written is my work, not
a translation or reproduction of someone else's paper, and it is

not plagiarized.

Bandung, June 12nd 2024

Maulvi Ziadinda Maulana

13522122

